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Numerical Methods
for Solving Linear Least Squares Problems™*

By
G. GOLUB

Abstract. A common problem in a Computer Laboratory is that of finding linear least
squares solutions. These problems arise in a variety of areas and in a variety of
contexts. Linear least squares problems are particularly difficult to solve because
they frequently involve large quantities of data, and they are ill-conditioned by their
very nature. In this paper, we shall consider stable numerical methods for handling
these problems. Our basic tool is a matrix decomposition based on orthogonal House-
holder transformations.

1. Introduction

Let A be a given mxn real matrix of rank #, and b a given vector. We
wish to determine a vector & such that

b — A4 &| =min. (1.1)

where |...| indicates the euclidean norm. If m=# and r<<» then there is no
unique solution. Under these conditions, we require simultaneously to (1.1) that

| & = min. (1.2)

Condition (1.2) is a very natural one for many statistical and numerical problems.
If m=n and r=mn, then it is well known (cf. [4]) that & satisfies the equation

ATAx=A"b. (1.3)

Unfortunately, the matrix AT4 is frequently ill-conditioned [6] and influenced
greatly by roundoff errors. The following example of LAucHLI [3] illustrates
this well. Suppose

171 1 1 1
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then
1+ 1 1 1 1 ]
1 1+ 1 1 1
ATA=| 1 1 14+ 1 1
1 1 1 1+ 1
1 1 1 1 14¢

Clearly for ¢==0, the rank of A74 is five since the eigenvalues of ATA are
51 €2, €2, g2, €2, €.

Let us assume that the elements of A7 4 are computed using double precision
arithmetic, and then rounded to single precision accuracy. Now let 5 be the
largest number on the computer such that f£(1.04%) =1.0 where fI(...) indicates

(1.4)

the floating point computation. Then if e< g, the rank of the computed re-

presentation of (1.4) will be one. Consequently, no matter how accurate the
linear equation solver, it is impossible to solve the normal equations (1.3).

In [2], HousEHOLDER stressed the use of orthogonal trausformations for
solving linear least squares problems. In this paper, we shall exploit these trans-
formations and show their use in a variety of least squares problems.

2. A Matrix Decomposition
Throughout this section, we shall assume m=n=7.
Since the euclidean norm of a vector is unitarily invariant,

o —Aa]|=lc—QAx|
where ¢=Qb and Q is an orthogonal matrix. We choose @ so that
R
QA=R={... (2.1)
0 }m—n)xn

where R is an upper triangular matrix. Clearly,

~

&=R1le

where € is the first » components of ¢ and consequently,

p—aa)=( ¥ &

J=m41

Since R is an upper triangular matrix and RTR=4T4, RTR is simply the
Choleski decomposition of A7 4.

There are a number of ways to achieve the decomposition (2.1); e.g., one
could apply a sequence of plane rotations to annihilate the elements below the
diagonal of 4. A very effective method to realize the decomposition (2.1) is
via HOUSEHOLDER transformations [2]. Let A=A4®, and let 4®, 4®, ..., A+
be defined as follows:

A1 __ p®) 48 (k=1,2,...,n).
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P® is a symmetric, orthogonal matrix of the form
PP T 290®qp®
for suitable w® such that w®“w®=1. A derivation of P® is given in [9].
In order to simplify the calculations, we redefine P*® as follows:

P®—7_ B uPu®?

where
o= @),
Br=on(ow +[als])],
uP =0 for i<k,
uP) = sgn (af¥y) (o1 + | alfh]),
) = al¥, for i>k.
Thus

AFHD — 4B 0 (g BT 4B

After P™® has been applied to A®, A®+1 appears as follows:

F k1)

A (h+1)_

O

where R*+Y is a % x k upper triangular matrix which is unchanged by subsequent
transformations. Now a{*{"=— (sgn a¥;), so that the rank of 4 is less than »
if ¢,=0. Clearly,
R=A®tY
and
Q=p» ptr=1  pw

although one need not compute Q explicitly.

3. The Practical Procedure

WILKINSON [10] has shown that the Choleski decomposition is stable for a
positive definite matrix even if no interchanges of rows and columns are per-
formed. Since we are in effect performing a Choleski decomposition of ATA,
no interchanges of the columns of A are needed in most situations. However,
numerical experiments have indicated that the accuracy is slightly improved
by the interchange strategies outlined below, and consequently, in order to
ensure the utmost accuracy one should choose the columns of A by some strategy.
In what follows, we shall refer to the matrix A® even if some of the columns
have been interchanged.



Numerical Methods for Solving Linear Least Squares Problems 209

One possibility is to choose at the 2™ stage the columns of A%® which will
maximize |a{’f"|. This is equivalent to searching for the maximum diagonal
element in the Choleski decomposition of ATA. Let

"

sg,k) Z (k) for j=k k4+1,...,n

Then since |a{{"| =a,, one should choose that column for which s is max-
imized. After A%V has been computed, one can compute s**? as follows:

SPU= (@ (kA1 .., m)

since the orthogonal transformations leave the column lengths invariant. Na-
turally, the s®’s must be interchanged if the columns of A® are interchanged.
Although it is possible to compute o directly from the s{*s, it is best to com-
pute o, at each stage using double precision inner products to ensure maximal
accuracy.

The strategy described above is most appropriate when one has a sequence
of vectors by, b,, ..., b, for which one desires a least squares estimate. In
many problems, there is one vector b and one wishes to express it in as few
columns of 4 as possible. This is the stagewise multiple regression problem.
We cannot solve this problem, but we shall show how one can choose that
column of A® for which the sum of squares of residuals is maximally reduced
at the &A™ stage.

Let ¢®=b and e**Y=P®c® Now R®#*V—=¢® where 2%~V is the
least squares estimate based on (k£ —1) columns of 4, and é® is the first (k—1)
elements of ¢®, and consequently

et — B030) = (5 e’

Since length is preserved under an orthogonal transformation, we wish to find
that column of A® which will maximize |c{**"|. Let

wm
t}k)z‘Zaﬁf}c?) for j=kk+1,...,m

=k

Then since |cf (k)/o’k’ one should choose that column of A%® for

which (#*)2/s® is maxmuzed After P® is applied to A®, one can adjust £

as fOH.OWS
t]( )-—t]()——-agw )Cge ).

In many statistical applications, if (£)2/s*) is sufficiently small then no further
transformations are performed.

Once the solution fo the equations has been obtained then it is possible
to obtain an improved solution by a simple iterative technique. This technique,
however, requires that the orthogonal transformations be saved during their
application. The best method for storing the transformation is to store the
elements of u® below the diagonal of the & column of A®*D.
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Let & be the initial solution obtained, and let #=%+e. Then

[b—A2|=|r—Ae|
where
r=b— A%, the residual vector.

Thus the correction vector e is itself the solution to a linear least squares problem.
Once 4 has been decomposed then it is a fairly simple matter to compute r
and solve for e. Since e critically depends upon the residual vector, the com-
ponents of r should be computed using double precision inner products and
then rounded to single precision accuracy. Naturally, one should continue to
iterate as long as improved estimates of # are obtained.

The above iteration technique will converge only if the initial approximation
to & is sufficiently accurate. Let

20D — 5@ +e(4) (q: 0,1,... ,)

with ®®=0. Then one should iterate only if |e®|/|®W]|<c where c<}, ie.
“at least one bit of the initial solution is correct”; otherwise there is little likeli-
hood that the iterative method will converge. Since convergence tends to be
linear, one should terminate the procedure as soon as

fe* > cle®] or Je¥|<nla]

where # is the maximum positive number such that fi(14-7) =1.

4. A Numerical Example
In Table 1, we give the results of an extensive calculation. The matrix con-
sists of the first 5 columns of the inverse of the 6 x6 Hilbert matrix. The cal-
culations were performed in single precision arithmetic. The columns were chosen
so that the diagonal elements were maximized at each stage. The iteration
procedure was terminated as soon as |e€**!]>0.25]e®|. Three iterations were
performed but since [|e®]>0.25 €W, x® was taken to be the correct solution.
In Table 2, we show the results of using double precision inner products
on the same problem. Note that the first iterate in Table 1 is approximately
as accurate as the first iterate in Table 2. The double precision inner product
routine converged to a solution for which all figures were accurate. The normal
equations were formed using double precision inner products but evenh with a
very accurate linear equation solver described by McKEEMAN [6] no solution
could be obtained.
5. An Iterative Scheme

For many problems, even with the use of orthogonal transformations it may
be impossible to obtain an accurate solution. Or, the rank of 4 may truly be
less than #. In this section, we give an algorithm for finding the least squares
solution even if AT4 is singular.

In [7], RiLEY suggested the following algorithm for solving linear least
squares problems for »=n. Let &® be an arbitrary vector, then solve

(ATA4al)x"V=ATb 4 ax?, (5.1)
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The sequence 9 converges to & if «> 0 since the spectral radius of (4T 4 +-a)2
is less than 1. Again we may implement this algorithm more effectively by the
use of orthogonal transformations.

First, let us note that (5.1) is equivalent to the following:

r9—=b— Az (5.2a)
(ATA +0(I)e(q)=ATT(q), (5.2b)
m(q+1):x(fl)+e(q). (5.2¢c)

The vector €9 is itself the solution of a linear least squares problem since €@
minimize |d? — Ce?| where
A r@
C=\|....}, d2=
VI 0
Thus the numerical procedure should go as follows. Decompose C by the
methods described in Section 2 so that
S
PC=S=
0o

where PTP=TI and S is an upper triangular matrix. Then let x®=0,

Se@=f@,
N =@ | @

and f9 is the vector whose components are the first # components of Pd®.
We choose =0 since otherwise there is no assurance that #'¢ will converge
to .

Now going back to the original process (5.1),

w(q+1):_.Gw(q)+h (5‘3)
where
G=a(ATA+al)* and h=(ATA+al)2A7b.
Thus
a:(q“):(G"-}—Gq_l-{—---—}-I)h. (5.4)
It is well known (cf. [6]) that 4 may be written as
A=UZVT

where X is an m X#» matrix with the singular values o; on the diagonal and
zeros elsewhere, and U and V are the matrices of eigenvectors of AAT and
AT A, respectively. Then

ATb=V ZTUTb=p4,0,0,+P,0,05+ *** +B,0,0,
where B=UTb, and r is the rank of 4. Then from (5.4) we see that

29 =‘}’(14)'¢71+ ves _H,gq),v'
Numer. Math. Bd. 7 15
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where

Bi P
U—; (1=1,2,...,7).

o= (et

29 Py 1. 1Py —a.
oy Oy

Thus as g— o0

The choice of o will greatly affect the rate of convergence of the iterative
method, and thus one must choose o with great care. If « is too small then the
equations will remain ill-conditioned. If é is a lower bound of the smallest
non-zero singular value, then « should be chosen so that

o
ot < 0.4, say.

This means at each stage, there will be at least one more place of accuracy in
the solution. There are a number of methods for accelerating the convergence

of (5.1) (cf. [1]).
It is easy to see that

e(”l):Ge(q)-——oz(A Ty +OLI)_16(q).
Since €/ lies in the space spanned by v, ..., v,, it follows immediately that

[ = e < [e”].

—
o+ a2
Thus a good termination procedure is to stop iterating as soon as |e”] increases
or does not change.

6. Statistical Calculations

In many statistical calculations, it is necessary to compute certain auxiliary
information associated with ATA. These can readily be obtained from the
orthogonal decomposition. Thus

det (ATA)= (113 X732 X *** X7, )%
Since
ATA=RTR, (ATAy1=RR-T.

The inverse of R can be readily obtained since Risan upper triangular matrix.
WaucH and DwyER [8] have noted that it is possible to calculate (47A4)!
directly from R. Let

ATA =X =(x,, @, ..., T,)-

Then from the relationship
RX=RT

and by noting that {R~T};;=1/r,;, it is possible to compute @,, %, y, ..., @,.
The number of operations are roughly the same as in the first method but more
accurate bounds may be established for this method provided all inner products
are accumulated to double precision.

In some statistical applications, the original set of observations are augmented
by an additional set of observations. In this case, it is pot necessary to begin
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the calculation from the beginning again if the method of orthogonalization is
used. Let ﬁl, €, correspond to the original data after it has been reduced by
orthogonal transformations and let A,, b, correspond to the additional observa-
tions. Then the up-dated least squares solution can be obtained directly from

R, é
A={...}, b=|-.:
4y b,

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only #{#n-4-1)/2 memory
locations are required. By partitioning the matrix 4 by rows, however, then
similarly only #(#n-+-1)/2 locations are needed when the method of orthogonali-
zation is used.

7. Least Squares Problems with Constraints

Frequently, one wishes to determine & so that |b — A &| is minimized subject
to the condition that H&=g where H is a p X% matrix of rank $. One can,
of course, eliminate p of the columns of 4 by Gaussian elimination after a p X$
submatrix of H has been determined and then solve the resulting normal equa-
tions. This, unfortunately, would not be a numerically stable scheme since no
row interchanges between 4 and H would be permitted.

If one uses Lagrange multipliers, then one must solve the (n--p) X(n-+2)

system of equations.
ATA
H

where A is the vector of Lagrange multipliers. Since &=(474)14"b—
(ATA)HTA,

HT) ﬁ ATb

0 A g

H(ATA)'H™A=Hz—g
where
2=(AT4)147b.

Note z is the least squares solution of the original problem without constraints
and one would frequently wish to compare this vector with the final solution &.
The vector 2, of course, should be computed by the orthogonalization procedures
discussed earlier.

Since ATA=RTR, H(ATA)LHT=WTW where W=R"THT. After W is
computed, it should be reduced to a p Xp upper triangular matrix K by ortho-
gonalization which is the Choleski decomposition of WX W. The matrix equation

K'KA=Hz—g
should be solved by the obvious method. Finally, one finds
T=2—(ATA)THA

where (ATA)*HA can, be easily computed by using R
15*
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