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Abstract .  

In this paper, we study the numerical computation of the errors in linear systems 
when using iterative methods. This is done by using methods to obtain bounds or 
approximations of quadratic forms u T A - l u  where A is a symmetric positive definite 
matrix and u is a given vector. Numerical examples are given for the Gauss-Seidel 
algorithm. 

Moreover, we show that using a formula for the A-norm of the error from Dahlquist, 
Golub and Nash [1978] very good bounds of the error can be computed almost for free 
during the iterations of the conjugate gradient method leading to a reliable stopping 
criterion. 

AMS subject classification: 65F50. 
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1 Introduct ion.  

Let A be a large, sparse symmetr ic  positive definite mat r ix  of order n and 
suppose an i terat ive method  is used to compute  an approximate  solution ~ of 
the l inear system 

(1.1) A x  = b, 

where b is a given vector. The residual r is defined as, 

r - - b - A ~ .  

The error e being e -- x - &, we obviously have 

e = A - l r .  

Therefore, if we consider the A - n o r m  of the error, 

Ilell2A = eT Ae = r T A - ' A A - I r  = rT A - i r .  

*Received October 1996. 
?The work of the first author was partially supported by NSF Grant CCR-950539. 
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It  is sometimes also of interest to study or compute the /2-norm, for which 
Ilell 2 = rTA-2r.  In order to bound or estimate HeHA, we must obtain bounds or 
estimates of r T A - l r ,  see [1] and [2]. Notice that  r is something we can compute 
but, of course, we do not want to compute A -1. 

Therefore, our task is to obtain computable bounds for quadratic forms 

(1.2) uT A-lu, 

without computing A-1.  This problem has been considered at length in [5] and 
[6], see also [4]. In [5], algorithms combining quadrature formulas and the Lanc- 
zos algorithm have been defined that  allow us to compute bounds for quadratic 
forms such as (1.2) and more generally for uTA- l v .  These algorithms are de- 
scribed in Section 2. Then, in Section 3, we see how to compute approximations 
of the A-norm of the error for iterative methods. As an example we consider the 
Gauss-Seidel method and give numerical examples. Section 4 is devoted to the 
particular case of the conjugate gradient (CG) algorithm. Using the connection 
of CG with the Lanczos algorithm, and a formula from [2], we derive a method 
to compute reliable bounds of the A-norm of the error during the CG iterations. 
This improves on the results in [6]. This method adds only a few floating point 
operations to CG meaning that  one can estimate the norm of the error almost 
for free. Numerical examples are given in Section 5. 

2 Quadrature algorithms. 

In [5], the more general problem of finding bounds for 

(2.1) uT f (A)v ,  

where u and v are given vectors and f is some smooth (possibly C ~ )  function 
on a given interval of the real line was considered. In the applications we are 
interested in here, we have u = v and f ( x )  = x -1. 

The first step of the method is to express the bilinear form in (2.1) as a Stieljtes 
integral. Since A = A T, we write A as 

A = QhQ T, 

where Q is the orthonormal matrix whose columns are the normalized eigenvec- 
tors of A and A is a diagonal matr ix  whose diagonal elements are the eigenvalues 
s of A, which we order as 

By definition, we have 

Therefore, 

O< A1 ~_A2 < ---_~ An. 

A -1 = QA-1Q T. 

uT A - l u  =_ uTQA-1QTu 

_-- oITh-  10L 

--1 2 
---- )~i Oq.  

i = 1  
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This last sum can be considered as a Riemann-St ie l t jes  integral 

I [ A , u ]  = u r A - i u  = A - 1  

where the measure c~ is piecewise constant  and defined by 

0 i f A < a = A 1  

E j = I  Olj c~(A) = i 2 if A i < A < A/+ I 

n 2 i f b = A n  < A  ~ j = l  o~j 

The idea is to use quadrature  formulas to approximate  the Riemann-Stiel t jes  
integral. We use the Gauss, Gauss -Radau  and Gauss -Loba t to  quadrature  for- 
mulas. The  general formula we will use for a function f is 

b N M 
fa y(A dc~(A) = E w j f ( t j )  + y '~vkf(zk)  + R[f], 

j=l k=l 

where the weights [wj]N=l, [vk]M_I and the nodes [tj]N=l are unknowns and the 

nodes [zk]M_l are prescribed. If  M = 0, tha t  is no prescribed nodes, this leads 
to the Gauss rule. If  M = 1 and Zl = a or zl -- b we have the Gauss -Radau  
formula. If  M = 2 and zl -- a, z2 = b, this is the Gauss -Loba t to  formula. It is 
known tha t  the remainder is 

R[f] - (2N + M)!  (A - Zk) (A -- tj) d(~(A), a < ~ < b. 
k=l 

The nodes and weights are obtained by considering the sequence of or thonormal  
polynomials  p0(A) ,p l (A) , . . ,  tha t  are associated to the measure c~. This set of 
or thonormal  polynomials  satisfies a three term recurrence relationship: 

7jpj(A) = ( A -  wj)pj_l(A ) --7j-lPj-2(A), j = 1 , 2 , . . .  , g  

p - I (A)  ------ 0, pO(A) = 1, 

if fdc~ = 1. 
In matr ix  form, this recurrence can be wri t ten as 

Ap(A) = JNp(A) + 7NPN(A)eN, 

where 

= ( 0 0 . . . 0 1 ) ,  

p(A) T ~--- [p0(A) pl(A).." PN_I(A)], 

or2 72 
J N  ~ "'. "'.  "'. 

"~N-2 WN-1 

7N-1 
")'N-1 / " 
~N / 
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The eigenvalues of JN (which are the zeroes of PN) are the nodes of the Gauss 
quadrature rule (i.e. M = 0). The weights are the squares of the first elements 
of the normalized eigenvectors of J g .  To obtain the Gauss-Radau and Gauss- 
Lobatto rules, we must extend the matrix JN in such a way that  it has the 
prescribed eigenvalues. Details are given in [5]. 

We note that  
N 

 lf(tl) = 
l = l  

where el is the first unit vector, see [5]. Therefore, as the sign of the remainder is 
known, it is enough to compute the (1, 1) element of the inverse of the tridiagonal 
matrix J g  to obtain a bound for the integral. The same statement is true for the 
Gauss-Radau and Gauss-Lobatto rules. The Gauss rule gives a lower bound, 
the Gauss-Radau rule gives both a lower and an upper bound and the Gauss- 
Lobatto rule gives an upper bound. 

The last ingredient of the algorithm is to obtain the coefficients of the recur- 
rences for the orthonormal polynomials. This is done through the use of the 
Lanczos algorithm. 

Let h-1 = 0 and h0 be given such that  IIh011 = 1. The Lanczos algorithm is 
defined by the following relations, 

"/jhj =- h j  = (A - a~jI )hj_l  - ~ / j - l h j -2 ,  j = 1, . . .  

where 
c~j = h T _ l A h j _ l ,  ",/j = Ilhjll. 

The sequence {h i}}= o is an orthonormal basis of the Krylov space 

span{h0, A h o , . . . ,  AZho}. 

Obviously, the vector hj is given by 

hj = pj  (A)ho,  

where pj is a polynomial of degree j defined by the three term recurrence 

"yjpj()~) = (.,~ - wj )p j - l j ( . ,~)  - " / j - lPj-2( .~) ,  p-l()~) - 0, p0(~) - 1. 

The (1,1) element of the inverse of the tridiagonal matrix JN can be computed 
incrementally as we go through the Lanczos algorithm (see [5]) and the following 
algorithm GQL (Gauss Quadrature and Lanczos) is finally obtained. 

A l g o r i t h m  GQL[A,  u, l] 

Suppose Ilull = 1, the following formulas yield a lower bound bj of u T A - l u  
by the Gauss quadrature rule, a lower bound bj and an upper bound bj through 

the Gauss-Radau quadrature rule and an upper bound/~j through the Gauss- 
Lobatto rule. 
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Let h - i  = 0 and h0 = u, 02i = u T A u ,  "/1 = ]I(A - 021I)ul], bi = 021 l, d l =  02i, 
C 1 = 1, d l =  02i - a, d i = 021 - b, h i  = (A  - 021I)u/~/1. 

Then for j = 2 , . . . ,  1 we compute 

(2.2) 

02j 

hj  = 

72 = 

h i - 

bj 

dj 

C3 

dJ 

•Jj 

bJ 

~j 

h y _ l A h j - 1 ,  

(A  - 0 2 j I ) h j - i  --  " / j - i h j - 2 ,  

IIhjll, 
hj 
~y' 

2 2 
" , /~_tCj_I  

= bj_l . -  t- 
e j -  l (02jdj_ i - "Y]- l ) ' 

-= 02J d j - 1  

~/j-1 
= e j - i  d j - 1  

"Y]-i 

---- OJj - -  a 4 _ 1  ~ 
2 

= 0 2 j - b  d j _ l ,  

a + "~] 
dj 

= b + ~ _ j ,  

= b j +  a j ( ~ j a j  - ~])' 

djdj a 

= ~ +  

_ dj_dj ( b - . ) ,  

~2 2 "/j cj 
= b j+  

Notice that  the bulk of the computations in Algorithm GQL comes about from 
the matrix vector product A h j _ l .  
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3 N u m e r i c a l  c o m p u t a t i o n  o f  t he  A - n o r m  of  t h e  e r ro r .  

As an example for solving A x  -- b, we consider one of the simplest methods: 
the Gauss-Seidel algorithm. Let x ~ be given and A = D + L + L T,  where D is 
diagonal and L is strictly lower triangular. Then, the iterates x k are computed 
by 

( D  + L ) x  k = b - L T  x k -1 .  

Suppose we want to compute bounds for the A-norm of the error at iteration k. 
The algorithm is the following: 

1. Compute the residual r k = b - A x  k = L T ( x  k -1  -- xk ) .  Note that L T x  k is 
computed in the algorithm. 

2. To compute bounds at iteration k, we set u = rk/ l lrk l l  and run GQL[A, u, 1] 
for a given I. 

It is of interest to know how many iterations 1 of Lanczos we need to obtain 
at least the order of magnitude of the error. We consider the following simple 
numerical example. 

EXAMPLE 1. The matrix arises from the 5-point finite difference of the Poisson 
equation in a unit square. This gives a linear system A x  --- b of order n -- m 2, 

T - I  

A ~ " . .  " . .  " , ,  

- I  T - I  
- I  T 

where 

each block being of order m and 

T = 

1 4 - 1  
" . .  * . ,  " . .  

- 1  4 
- 1  

We choose n = 900, b such that the exact solution xex is xex = (1 , . . . ,  1) T and 
a zero initial guess x ~ We use a = 0.02, b = 8 when the "exact" eigenvalues are 
),1 = 0.0205227, An = 7.979472. The computations were done using Matlab 4.1 
on an Apple Macintosh Quadra 650. 

Although we do not recommend this procedure, at each iteration k of Gauss- 
Seidel we computed the residual and ran Lanczos to compute bounds for lie k IIA. 

Figure 3.1 shows the relative differences between the bounds and the exact value 
of the A-norm of the error as a function of k for l = 2. Figure 3.2 shows the 
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estimate-Ile~= II Figure 3.1: Gauss-Seidel, Ile~=ll for 1 = 2 as a function of k, solid line: Gauss, 
dots and dashed line: Gauss-Radau, dot~dashed line: Gauss-Lobatto. 

relative differences for Gauss-Seidel  i teration k = 300 as a function of 1. This 
shows tha t  good estimates (less than  2% relative difference) can be obtained for 
only two Lanczos iterations. Figure 3.3 shows the sensitivity of the bounds to 
the given value of a for 2 i terations of Lanczos and k = 10. Remember  that  
the lower bound  from the Gauss rule is independent  of a and b. Notice tha t  
the lower bound  from Gauss -Radau  is independent of a. The upper  bounds do 
depend on a but  only a rough est imate is needed. W h e n  a becomes too large 
the est imates are not upper  bounds anymore and for very large values of a they 
converge to the lower bounds. The bounds are almost independent  of b. 

REMARK 3.1. 

i) The bounds are only very slightly dependent  on the eigenvalue estimates. 

ii) The same method  can be used with any iterative method  and also with 
any process tha t  computes  an approximation of the solution of A x  --  b. 

iii) Notice we have the following relationship between the A - n o r m  of the error 
and the 12 norm, 

Alliekii 2 _< liekli  _< Anli  ii 2 

Therefore, if we have i lekliA <_ e then, Hekl] < r  We have also 

LIr li Ilrkll < II kll  < - -  

Therefore, if A 1 is not  too  much different from An, the 12 norm of the 
residual can be a good approximat ion of the norm of the error. 
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iv) The 12 n o r m  of the error can also be estimated directly. In that  case we 
have to deal with j~-2. This will be considered in detail in a future paper. 

v) We note that  the Gauss-Seidel iterates can be improved by the Lanczos 
steps that  we ran for computing the error as an approximate solution y 
of A y  = r k can be computed from the Lanczos iterates and added to the 
current approximation x k. In this way the work that  is done to estimate 
the error is not lost. 

4 C o m p u t a t i o n  of  the  A - n o r m  of  the  error for CG. 

Regarding the computat ion of the A-norm of the error, the situation of CG 
is different from other iterative methods. The most common form of CG is the 
following: 

Algor i thm CG 

Let x ~ be given, r ~ = b - A x  ~ pO = r o, for k = 1 , . . .  until convergence 

r k -  l T r k - 1  

O~k_ 1 - -  
p k - l T  A p k - l  ' 

X k = X k - 1  .~ OLk_lP k - l ,  

r k : r k - 1  _ O ~ k _ l A p  k - l ,  

r k T r k  

/3k --  
r k _ l T r k _ l  ' 

pk  :_ r k + /~kpk-1.  

It  is well known that ,  in some sense, CG is equivalent to Lanczos. In fact, if 
we start  Lanezos from r~176 then 

r k 
h k + l  _-- ( - 1 )  k [[rk[[, 

and we have the following relationship between the Lanczos and CG coefficients, 
f o r k =  1 , . . .  

1 /~k--1 
wk -- - - + - - ,  /30----0, a-1----1 

O~k-1 OLk--2 

'Tk - -  
OLk_ 1 " 

Therefore, it is "the same" to run CG for l iterations or G Q L [ A , r ~ 1 7 6  ]. 

This means that  when running CG we can compute bounds for r ~  ~ that  
will improve when k grows. So, it would be wasteful to run GQL[A, rk / l l rk l l  , l] 
starting from CG results to get bounds of the error at step k. 



696 G. H. G O L U B  A N D  G. M E U R A N T  

(4.1) Ilekll~4 = IIx - xkll 2 

(4.2) 

Notice, we also have 

How can we estimate r k T A - l r  k ? We can use a formula from [2] (see [6] for a 
proof) that  relates the A-norm of the error at step k and the inverse of Jk, 

r O T A - l r  0 0 2 - 1  = - l i t  II ( g ; ) (1 ,1 )  
0 2 -1 - I  = IIr II ( ( J n ) ( 1 , 1 ) -  ( J k ) ( 1 , 1 ) ) .  

and hence, 

k - 1  

Ilekll~ = r~176 - E ~yll r i l l2,  
j = 0  

k - 1  

= IIr II ( J ; ) r  
j = 0  

Formula (4.2) has been used in [6] for reconstructing the A-norm of the error but 
the (1, 1) element of the inverse was computed by means of continued fractions. 
A round off error analysis given in [6] shows that  below a certain value of lie k 112A, 
no more useful information can be obtained from this algorithm. 

Formula (4.2) has also been used in [3] but, the computat ions of IlekllA were 
not calculated below 10 -5. We will show below that  these difficulties can be 
overcome and that  reliable estimates of ]lekllA can be computed. 

For the sake of simplicity, let us just consider the lower bound bk computed by 
the Gauss rule and let sk be the estimate of Ilekll 2. Let d be a positive integer, 
then the idea is to use the following formula at CG iteration k, 

(4.3) Sk-d = IIr~ - bk-d),  

where bk is defined as in (2.2) to get an estimate of the error at iteration k - d. 
The larger is d, the bet ter  will be the estimate. 

If we use a naive approach by computing bk by formula (2.2), then we run 
into some difficulties which are similar to the ones described in [6]. Roughly 
speaking what we see in the numerical experiments is that,  for k sufficiently 
large, "/k-1/dk-1 < 1, and therefore ck --+ 0. Let us denote 

 L14-1 
f k -1  = dk - l (wkdk -1  2 > O, - -  ~ / k - 1 )  

then since the denominator is bounded, fk --+ 0 (fk being a decreasing sequence). 
Then computing bk, we start  by summing the largest terms of the sequence. It 

happens that  when k >/~, fk  adds no significant digit to bk. Therefore if k > k, 
bk = b E and Sk-d = 0 up to working precision when k > /~ + d, and no useful 
information can be gotten from (4.3). 

But the solution of this problem is very simple. As bk = bk-1 + fk-1 and we 
are not interested in bk itself but only in bk - bk-d, we can reliably compute the 
difference by only summing up some of the fk's. Notice it is likely that  they are 
going to be of the same order of magnitude. The algorithm is the following: 
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A l g o r i t h m  C G Q L  
Let x ~ be  g iven,  r ~ = b - A x  ~  pO = r o,/30 = 0, a - 1  = 1, c 1 = 1. 
For k = 1 , . . .  unt i l  convergence  

if k =  1 

else 

end  

OLk-- 1 

~k 

r k -  l T r k - 1  

p k _ l T  A p k _  1 ' 

1 r 

OLk_l OLk-- 2 

1 
f l  - 

c j  I ' 

dl  = ~dl ~ 

d l  = 021 --  at  

d 1 --- 021 --  b, 

2 2 
7 k - l C k _ l  

A = 
d k - l ( W k d k - 1  2 ' - % - 1 )  

~ ' k - 1  
Ck = Ck-1 d k - 1  ' 

2 
7 k - 1  

dk = Wk -- - -  
d k - 1  ' 

2 
"fk-1 

& = W k - - a  d k - 1  

d k - 1  

X k = X k - 1  _~_ Olk_lP k - l ,  

r k = r k - 1  _ ~ k _ l A p k - 1  

r k T r k  
~ k  - 

r k _ l T r k _  1 

r  
~/k - -  

Olk_ 1 ' 

p k  = r k -t- t3kp  k - 1  , 

2 

w k = b + 7~  
d k ' 
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i f k > d  

~k  

A 

f---k 

dkdk ( b a)  

_ - , ~ = k  ( b  a~ 

cl k - dk 
2 2 

"~k Ck 

d k ( ~ k d k  -- 7~)'  
2 2 

"~kCk 
d k (w k d k  - ~,~)' 

~2 2 "/k Ck 
dk(~okdk - %) 

k 

t~ = E I j, 
j = k - d + l  

Sk-d = IIr~ 

~ - ~  = I I r ~  

~-k-d = IIr~ tk + f--k)' 

~ - ~  = I I r ~  

end 

This algorithm gives lower bounds 8k_d, 8_k_ d and upper bounds 8k-d, 8k-d 
of Ilek-filL 

Notice that  in the practical implementation we do not need to store all the f k s  
but only the last d. We can also compute only some of the estimates. Remember  
that  the lower bound Sk-d  does not depend on the eigenvalue bounds a and b. 

The additional number of operations is approximately 50 + d if we compute 
the four estimates, which is almost nothing compared to the 10 n operations plus 
the matr ix-vector  product of CG. 

An interesting question is to know how large d has to be to get a reliable 
estimate of the error. We are going to see this in the numerical experiments in 
the next section. 

5 Numerica l  experiments .  

Example 1 is the Poisson problem we considered in Section 3. We will con- 
sider three more examples. Example 2 arises from the 5-point finite difference 
approximation of a diffusion equation in a unit square, 

- d i v ( a V u )  = f ,  

with Dirichlet boundary conditions, a(x ,  y)  is a diagonal matr ix  with equal 
diagonal elements. This element is equal to 1000 in a square ]1/4, 3/4[x]1/4,  3/4[, 
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1 otherwise. Example 3 is the same with different diffusion coefficients. The 
coefficient in the x direction is 100 if x E [1/4, 3/4], 1 otherwise. The coefficient 
in the y direction is constant and equal to 1. For the first three problems, we 
choose n = 900, b such that the exact solution x~x is x~x = (1 , . . . ,  1) T and a 
random initial guess x ~ 

Example 4 is taken from [6]. The matrix A is diagonal. The diagonal elements 
are defined as 

i w 1 
# i = a +  (b-a)p  n-~, i=2 ,  . , n - 1  # l = a ,  #n---b  

n 1 "" 

As in [6], we take n = 48, a = 0.1, b = 100 and p = 0.875. 

5.1 Results for Example 1. 

As before a = 0.02 and b = 8. The naive algorithm gives a zero estimate after 
85 iterations of CG. Figure 5.1 shows the exact error and the bound from the 
Gauss rule with d = 2 on a logarithmic scale. After 60 iterations the two curves 
are indistinguishable. Figure 5.2 is a plot of the relative differences between the 
error and the lower bounds from the Gauss rule for different values of d. We see 
that when d increases, the bounds get significantly better. Note it is not difficult 
to take a large value of d. The only drawbacks are: 

1. the number of operations increase, but not very significantly, 

2. we only get bounds for the error d iterations before the current one. If 
we use this to stop the iterations, we are loosing d iterations as the actual 
error will be smaller. 

Figure 5.3 is a picture of the relatives differences for d = 10 as a function of k. 
We see that the lower bounds are better than the upper ones. But this improves 
when d increases. Moreover, the bounds improve when k gets larger. 

We see that the bounds depend only slightly on the estimates of the smallest 
eigenvalue. However, it is well known that the smallest and largest eigenvalues 
of Jk approximate the smallest and largest eigenvalues of A. Therefore, we 
can devise an adaptive algorithm for estimating a. For some CG iterations, we 
compute the smallest eigenvalue of Jk by an inverse power iteration. This is 
cheap as we have at hand the LDL T decomposition of the tridiagonal matrix 
Jk. In fact, the dk that are computed in CGQL are the diagonal elements of 
the decomposition. When, the smallest eigenvalue has converged it replaces the 
initial estimate. In this way, even though the bounds can be very crude in the 
first CG iterations, as soon as we switch, we recover very good upper bounds. 

5.2 Results for Example 2. 

In the next two examples, we scale the matrix by its diagonal. Therefore, b -- 2. 
For Example 2, we take a = 10 -5 when the exact eigenvalue is 1.022-10 -5. Figure 
5.4 shows the logarithm of the error and the bounds for d -- 20. Note that the 
results are not as good as for Example 1, especially for the upper bounds. But, 
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Figure 5.2: CG, Example  1, estimate-ll~kllA ii~kll A as a function of k for the Gauss rule, solid 
line: d = 2, dashed line: d = 3, dot ted  line: d = 4, do t -dashed  line: d = 10. 
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Figure 5.3: CG, Example 1, estimate-li~hiA d -- 10 as a function of k, solid line: 
ilekll~ 

Gauss, dashed and dotted lines: Gauss-Radau,  dot-dashed line: Gauss-Lobatto.  

af ter  50 CG i te ra t ions  the  bounds  are  very good.  This  is exemplif ied even more 
in F igure  5.5. We see t h a t  when k > 50, the  percentage  of error  is a round  10%. 

5.3 Results for Example 3. 

This  example  is more  difficult t han  the preceding ones as the  error  does not  
decrease too  much for 300 i terat ions .  We take  a = 1.49.10 -4  which is a l i t t le  bi t  
less t h a n  the exact  value. F igure  5.6 shows the  logar i thm of the  error  and  the 
bounds  for d -- 10. The  percen tage  of error  is given on F igure  5.7. Once again,  
the  lower bounds  are be t t e r  t han  the  uppe r  ones. But  the  la te r  ones improve 
when k gets  large. A larger  value of d will give b e t t e r  results.  

5.4 Results for Example 4. 

This  example  was devised by  Z. Strako~ to p roduce  large rounding  errors in 
CG. Note  t ha t  we need 100 i t e ra t ions  to  reach an error  of 10 -10 when the  order  
of the  m a t r i x  is n -- 48. However C G Q L  gives good bounds  for the  error  even 
wi th  a smal l  value of d. In  F igure  5.8, we choose d = 2. F igure  5.9 gives the  
re la t ive  differences for d --  10. The  resul ts  are  qui te  sat isfactory.  
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Figure 5.4: CG, Example 2, Loglo of IlekllA (solid line) and of est imates ,  d -~ 20, solid 
line: Gauss, dashed and dotted lines: Gauss-Radau,  dot-dashed line: Gauss-Lobatto.  
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Figure 5.5: CG, Example 2, estimate-IleklTA d -- 20 as a function of k, solid line: ilekll A 
Gauss, dashed and dotted lines: Gauss-Radau,  dot-dashed line: Gauss-Lobatto.  
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Figure 5.6: CG, Example 3, Loglo of liekllA (solid line) and of estimates, d = 10, solid 
line: Gauss, dashed and dotted lines: Gauss-Radau, dot-dashed line: Gauss-Lobatto. 
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Figure 5.7: CG, Example 3, estimate-Ilekh d -- 10 as a function of k, solid line: 
I[ekllA 

Gauss, dashed and dotted lines: Gauss-Radau, dot-dashed line: Gauss-Lobatto. 
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Figure 5.8: CG, Example 4, LOglO of nekllA (solid line) and of estimates, d = 2, solid 
line: Gauss, dashed and dotted lines: Gauss-P~dau, dot-dashed line: Gauss-Lobatto. 
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Figure 5.9: CG, Example 4, estimate-II~kllA d = 10 as a function of k, solid line: 
Ileklla 

Gauss, dashed and dotted lines: Gauss-Radau, dot-dashed line: Gauss-Lobatto. 



MATRICES, MOMENTS AND QUADRATURE II 705 

6 C o n c l u s i o n .  

In this paper, we have shown that bounds for the A-norm of the error can 
be easily computed by using Lanczos and quadrature rules. Moreover in the 
case of CG, bounds can be computed during the CG iterations almost for free. 
These bounds can be much better than some obtained by other ways when a 
sufficiently large value of the delay d is used. In CG, the estimate of the smallest 
eigenvalue can be obtained also during the iterations leading to an algorithm 
which is only slightly dependent on the eigenvalue estimates. This gives a more 
reliable stopping criteria for CG. 
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