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Numerical Methods 
for Solving Linear Least Squares Problems* 

By 

G. GOLUB 

Abstract. A common problem in a Computer Labora tory  is tha t  of finding linear least 
squares solutions. These problems arise in a var ie ty  of areas and in a variety of 
contexts. Linear least squares problems are par t icular ly  difficult to solve because 
they  frequently involve large quanti t ies of data, and they  are ill-conditioned by  their  
very nature. In  this paper, we shall consider stable numerical methods for handling 
these problems, Our basic tool is a mat r ix  decomposition based on orthogonal House- 
holder transformations. 

1. Introduct ion 

Let  A be a given m •  real  m a t r i x  of rank  r, and  b a given vector.  We 
wish to de te rmine  a vec tor  �9 such t h a t  

1[ b - -  A ~][ = min.  (t.1) 

where I['"I[ indica tes  the  eucl idean norm. If  m > n  and r < n  then  there  is no 
unique solution. U n d e r  these condit ions,  we require  s imul taneous ly  to (t.1) t ha t  

ll~ll----min. (L2) 

Condit ion (1.2) is a v e r y  na tu ra l  one for m a n y  s ta t i s t ica l  and  numer ica l  problems.  

I f  m > n  and r = n ,  then i t  is well known (cf. [4~) t ha t  ~ satisfies the  equat ion 

A T A x = A T b .  (t.3) 

Unfor tuna te ly ,  the  m a t r i x  A rA  is f requent ly  i l l -condi t ioned [6] and  influenced 
g rea t ly  b y  roundoff  errors. The  following example  of L~IUCHLI [8] i l lus t ra tes  

A = 

this  well. Suppose 
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then 

A T A  = 

-t  + e 2 t 1 1 1 

1 t + d  t 1 t 

1 t l + e  2 t t 

t t t t + e  s 1 

t 1 t t t + e  z 

(1.4) 

Clearly for e#O, the rank of ATA is five since the elgenvalues of ATA are 

Let us assume that  the elements of ArA are computed using double precision 
arithmetic, and then rounded to single precision accuracy. Now let ~7 be the 
largest number on the computer such that  ]l (l.0+r/) -------t.0 where ]l (...) indicates 

the floating point computation. Then if e <  ~ ,  the rank of the computed re- 

presentation of (t.4) ~ be one. Consequently, no mat ter  how accurate the 
linear equation solver, i t  is impossible to solve the normal equations (t.3). 

In  [2], HOUSEHOLDER stressed the use of orthogonal transformations for 
solving linear least squares problems. In this paper, we shall exploit these trans- 
formations and show their use in a variety of least squares problems. 

2. A Matr ix  D e c o m p o s i t i o n  

Throughout this section, we shall assume m ~ n =  r. 
Since the euclidean norm of a vector is unitarily invariant, 

l ib-- A ~ll = l i e -  QA ~l[ 

where c =  Q b and Q is an orthogonal matrix. We choose Q so that  

�9 . ( 2 . 1 )  
Q A = R =  0 }(,~-,ox, 

where R is an upper triangular matrix. Clearly, 

~ = / 7 - 1  c 

where ~ is the first n components of e and consequently, 

Ilb-- A = ( Y, c t. 
~i=m+l / 

Since R is an upper triangular matrix and ff, r R = A r A ,  ~ r ~  is simply the 
Choleski decomposition of ArA. 

There are a number of ways to achieve the decomposition (2.1); e.g., one 
could apply a sequence of plane rotations to annihilate the elements below the 
diagonal of A. A very effective method to realize the decomposition (2.t) is 
v ia  HOUSEHOLDER transformations [2]. Let A = A  ~), and let A ~z), A (a) . . . . .  A ("+1) 
be defined as follows: 

Aq'+x)--=P(~)A Ik) ( k = t ,  2 . . . . .  n). 
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P(~) is a symmetric,  orthogonal matr ix  of the form 

p(k) = I --  2w(k) w (~)~ 

for suitable w (k) such tha t  W(k)~'W(k)=t. A derivation of P(~) is given in E9]. 

In  order to simplify the calculations, we redefine pIkl as follows: 

P(~) = I - -  flk U(k) U (~)~ 
where 

k ~ 
(7 k ~ ~ ,  2 , 

= + [ 4 , I)P 
u! k ) = 0  for i < k ,  

ui )= sgn + 1 
u!k) = Ak) for i > k. t ' i ,  k 

Thus 
A(~+I) = A (~) - -  u (k) (fl~ u (~) * A(k)). 

After p(k) has been applied to A (k), A (k+~) appears as follows: 

A (k+ 11= 

where ~(~+11 is a k x k upper  tr iangular matr ix  which is unchanged by  subsequent 
transformations.  Now , # + 1 ) _  ~(k) ~ ~k, ~ - - - -  (sgn ~k, ~jvk so tha t  the rank of A is less than n 
if a k = 0. Clearly, 

R=A(*+I )  
and 

Q = p(*) p(*-~) . . .  pa )  

a l though one need not  compute  Q explicitly. 

3. The Practical Procedure 

WILKINSON EIO] has shown t h a t  the Choleski decomposition is stable for a 
positive definite matr ix  even if no interchanges of rows and columns are per- 
formed. Since we are in effect performing a Choleski decomposition of A rA, 
no interchanges of the columns of A are needed in most  situations. However,  
numerical experiments have indicated tha t  the accuracy is slightly improved 
by  the interchange strategies outlined below, and consequently, in order to 
ensure the u tmos t  accuracy one should choose the columns of A b y  some strategy.  
In  wha t  follows, we shall refer to  the matr ix  A c~l even if some of the columns 
have been interchanged.  
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One possibili ty is to choose at  the k th stage the columns of A (*) which will 
maximize ]~(a+~),,~, ~ . This is equivalent  to searching for the m a x i m u m  diagonal 
e lement  in the Choleski decomposit ion of A TA.  Let  

s?) = ~ ,r,*!~!~,,, for j = k ,  k +  l, . . . ,  . .  
*=k 

Then since ].(~+~) ,~, k ----ak, one should choose tha t  column for which s~ ~1 is max-  
imized. After  A Ik+~l has been computed,  one can compute  sJ ~+~) as follows: 

S ( ~ + I )  _ o (k )  t , , ( k  + 1)~ ~ J - - ~  , ( j = k + l  . . . . .  m) 

since the or thogonal  t ransformat ions  leave the column lengths invariant .  Na- 
turally,  the s~k)'s mus t  be interchanged if the columns of A I~) are interchanged. 
Although it is possible to compute  ak directly from the s~k)'s, it is best  to com- 
pute  a~ at  each stage using double precision inner products  to ensure max ima l  
accuracy. 

The s t ra tegy  described above is most  appropr ia te  when one has a sequence 
of vectors  bl ,  b 2 . . . . .  bp for which one desires a least squares estimate.  In  
m a n y  problems,  there is one vector  b and one wishes to express it in as few 
columns of A as possible. This is the stagewise mult iple regression problem. 
We cannot  solve this problem, bu t  we shall show how one can choose tha t  
column of A ~k) for which the sum of squares of residuals is maximal ly  reduced 
at  the k th stage. 

Let  c(1)=b and C(~+I)=P(k)C(k). Now /~(~)~(k-~)=~(~) where ~(~-~) is the 
least squares es t imate  based on (k - -  ~) columns of A, and ~(~) is the first (k - -  t) 
elements of c (~), and consequently 

Since length is preserved under  an orthogonal  t ransformat ion,  we wish to find 
tha t  column of A (kt which will maximize [c(kk+l)]. Le t  

t~k)_ ~ -Ok) c!k) for j = k, k + t ,  m (-ti. i . . . ,  . 

a Ik) k//a k one Then since I cL +l) I = should choose t ha t  column of A c*) for 
i = k  

which (t}kl)2/s} ~) is maximized.  M t e r  pIk/ is applied to A (*), one can adjust  t} kt 
as follows: 

- -  ' ~ k , ]  

In m a n y  statist ical  applications, if (t}k))~]s I~l is sufficiently small  then no fur ther  
t ransformat ions  are performed. 

Once the solution to the equations has been obtained then it is possible 
to obtain an improved  solution b y  a simple i terat ive technique. This technique, 
however,  requires tha t  the or thogonal  t ransformat ions  be saved during their  
application. The  best  method  for storing the t ransformat ion  is to store the 
elements of u (k) below the diagonal of the k th column of A (~+1~. 
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Let  ~ be the initial solution obtained, and let ~ = ~ + e .  Then 

l ib- -A = l i t--  A ell 
where 

r = b --  A ~ ,  the residual vector. 

Thus the correction vector e is itself the solution to a linear least squares problem. 
Once A has been decomposed then it is a fairly simple mat ter  to compute r 
and solve for e. Since e critically depends upon the residual vector, the com- 
ponents of r should be computed using double precision inner products and 
then rounded to single precision accuracy. Naturally, one should continue to 
iterate as long as improved estimates of ~ are obtained. 

The above iteration technique will converge only if the initial approximation 
to ~ is sufficiently accurate. Let  

x(q+l)--~-x(q)-~e(q) (q=O, t . . . . .  ) 

with x<~ Then one should iterate only if where c < ~ ,  i.e. 
"at least one bi t  of the initial solution is correct"; otherwise there is little likeli- 
hood that  the iterative method will converge. Since convergence tends to be 
linear, one should terminate the procedure as soort as 

where ~ is the maximum positive number  such that  f l ( 1 + ~ ) ~  1. 

4. A Numerical  Example  

In Table 1, we give the results of an extensive calculation. The matrix con- 
sists of the first 5 columns of the inverse of the 6 • 6 Hilbert matrix. The cal- 
culations were performed in single precision arithmetic. The columns were chosen 
so tha t  the diagonal elements were maximized at each stage. The iteration 
procedure was terminated as soon as I1r 0.25 lie<% Three iterations were 
performed but since Ile<2  H > 0.25 llea ll, x<2  was taken to be the correct solution. 

In Table 2, we show the results of using double precision inner products 
on the same problem. Note that  the first iterate in Table t is approximately 
as accurate as the first iterate ill Table 2. The double precision inner product 
routine converged to a solution for which all figures were accurate. The normal 
equations were formed using double precision inner products but  even with a 
very accurate linear equation solver described by  McKEEMAI~ [6] no solution 
could be obtained. 

5. An Iterat ive Scheme 

For many  problems, even with the use of orthogonal transformations it may  
be impossible to obtain an accurate solution. Or, the rank of A may  truly be 
less than n. In  this section, we give an algorithm for finding the least squares 
solution even if ATA is singular. 

In  [7], RILEY suggested the following algorithm for solving linear least 
squares problems for r=n.  Let x {~ be an arbi trary vector, then solve 

(Ar A +~I)x(q+l)=Arb+~x(q).  (5.t) 
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The sequence x (q) converges to ~ if :r  0 since the spectral radius of cr (A r A  + ~I)  -1 
is less than  t. Again we m a y  implement this algorithm more effectively b y  the 
use of orthogonal transformations. 

First, let us note tha t  (5.1) is equivalent to the following: 

r(q)= b - -  A x (q), (5.2a) 

(A T A -{- o~ I )  e (q) : A T~(q), (5.2 b) 

X (q+~) ~ X (q) + e (q)- (5.2 c) 

The vector e (q) is itself the solution of a linear least squares problem since e (q) 
minimize Ila<q)--Ce<q'II where 

C = �9 , d (q)  = . 

Thus the numerical procedure should go as follows. Decompose C b y  the 
methods described in Section 2 so tha t  

where P T p = I  and S is an upper  tr iangular matrix. Then let x(~ 

S~(q) =i(q) 

x(q+l)_~_ x(q) + e (q) 

and ](q) is the vector  whose components are the first n components of P d  (q). 
We choose x(~ 0 since otherwise there is no assurance tha t  x (q) will converge 
to ~. 

Now going back to the original process (5A), 

x(q+l) = Gx(q)+h (5.3) 
where 

G = a ( A T A + c z I )  -1 and h = ( A r A + c ~ I ) - l A T b .  
Thus 

x(q+l)= (Gq + Gq-l + ' ' '  + I) h. (5.4) 

I t  is well known (cf. [6]) tha t  A m a y  be wri t ten as 

A = U X V  r 

where 2: is an m •  matr ix  with the singular values a i on the diagonal and 
zeros elsewhere, and U and V are the matrices of eigenvectors of A A r and 
A TA, respectively. Then 

A T b =  V X  r Urb = f l l O ' l V l  +f12ff2V2 + " '"  + f l f f f ~ , V  r 

where ~ =  Urb, and r is the rank of A. Then from (5.4) we see that  

x (q)=7(~ q) v l + . . .  +~q) v, 
Numer. Math. Bd. 7 t 5 
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where 

. . . . .  r )  

Thus as q-+  oo 

x (q) --> ~ vl + "'" -~ fl" v = ~ .  
GI -- GT r 

The choice of a will greatly affect the rate of convergence of the iterative 
method, and thus one must  choose cc with great care. If ~ is too small then the 
equations will remain ill-conditioned. If ~ is a lower bound of the smallest 
non-zero singular value, then 0c should be chosen so that  

~ + ~  < 0 . t ,  say. 

This means at each stage, there will be at least one more place of accuracy in 
the solution. There are a number  of methods for accelerating the convergence 
of (5.t) (cf. [1]). 

I t  is easy to see that  

e (q+l) = Ge  (q) = o~ (A TA + o~I) -~ e (q). 

S i n c e  e (q) lies in the space spanned by  vl . . . . .  v , ,  it follows immediately that  

Thus a good termination procedure is to stop iterating as soon as Ile(*)l[ increases 
or does not change. 

6. Statistical Calculations 

In many  statistical calculations, it is necessary to compute certain auxiliary 
information associated with A T A .  These can readily be obtained from the 
orthogonal decomposition. Thus 

det (ATA)  = (r n X r ~  X " "  Xr . . )  ~. 
Since 

A T A  = ~ r ~ ,  ( A T A ) - ~ = ~ - x ~ - r .  

The inverse of R can be readily obtained since R is an upper triangular matrix. 
WAUGH and DWYER [8] have noted that  it is possible to calculate (ATA)  -1 

directly from R. Let 
(AT A ) - I = X =  (x 1, x~ . . . . .  x . ) .  

Then from the relationship 

and by  noting that  { R - T } . = I / r . ,  it is possible to compute x . ,  x ._x . . . . .  x~. 
The number  of operations are roughly the same as in the first method but  more 
accurate bounds m a y  be established for this method provided all inner products 
are accumulated to double precision. 

In some statistical applications, the original set of observations are augmented 
by  an additional set of observations. In this case, it is t~ot necessary to begin 
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the calculation from the beginning again if the method of orthogonalization is 

used. Let R1, cl correspond to the original data after it has been reduced by 
orthogonal transformations and let A 2, b 2 correspond to the additional observa- 
tions. Then the up-dated least squares solution can be obtained directly from 

A =  . . .  , b =  �9 . 

\-42/ 

The above observation has another implication. One of the arguments 
frequently advanced for using normal equations is that only n (n-l-1)/2 memory 
locations are required. By partitioning the matrix A by rows, however, then 
similarly only n (n+  1)/2 locations are needed when the method of orthogonali- 
zation is used. 

7. Least Squares Problems with Constraints 

Frequently, one wishes to determine $ so that l i b -  A ~ll is minimized subject 
to the condition that H$=g where H is a p •  matrix of rank p. One can, 
of course, eliminate p of the columns of A by Ganssian elimination after a p •  
submatrix of H has been determined and then solve the resulting normal equa- 
tions. This, unfortunately, would not be a numerically stable scheme since no 
row interchanges between A and H would be permitted. 

If one uses Lagrange multipliers, then one must solve the (n+p)x(n+p) 
system of equations. (A i: ) Jo/\x/ 
where X is the vector of Lagrange multipliers. Since ~=(ATA)-IArb - 
(Ar A)-IHTX, 

H(AT A)-IHTX=Hz-- y 
where 

z=(AT A)-IATb. 

Note z is the least squares solution of the original problem without constraints 
and one would frequently wish to compare this vector with the final solution ~. 
The vector z, of course, should be computed by the orthogonalization procedures 
discussed earlier. 

Since ATA~RTR, H(ATA)-IHr=WTW where W=R-TH T. After W is 
computed, it should be reduced to a p •  upper triangular matrix K by ortho- 
gonalization which is the Choleski decomposition of W T W. The matrix equation 

KTKX=Hz_ g 

should be solved by the obvious method. Finally, one finds 

=z-- (AT A)-XHX 

where (ATA)-XHX carkbe easily computed by using/~-x. 
15" 



2i6 G. GOLUB: Numerical Methods for Solving Linear Least Squares Problems 

Acknowledgements. The author is very pleased to acknowledge the programming 
efforts of Mr. PETER BUSINGER and Mr. ALAN MERTEN. He also wishes to thank 
Professor THOMAS ROBERTSON for his critical remarks. 

References  
Eli GOLUB, G. H., and R. S. VARGA: Chebyshev Semi-lterative Methods, Successive 

Over-Relaxation Iterative Methods, and Second Order Richardson Iterative 
Method. Numer. Math. 3, t47-- I68  (1961). 

[2] HOUSEHOLDER, A. S.: Unitary Triangularization of a Nonsymmetric Matrix. J. 
Assoc. Comput. Mach. 5, 339--342 (1958). 

[3] L/~UCHLI, P. : Jordan-Elimination und Ausgleichung nach kleinsten Quadraten. 
Numer. Math. 3, 226--240 (196t). 

[4] LINNIK, Y. : Method of Least Squares and Principles of the Theory of Observa- 
tions. Translated from Russian by R. C. ELANDT. New York: Pergamon 
Press 1961. 

[5] McKEEMAN, W.M. :  Crout with Equilibration and Iteration. Algorithm 135. 
Comm. Assoc. Comput. Mach. 5, 553--555 (1962). 

[6] OSBORNE, E. E. : On Least Squares Solutions of Linear Equations. J. Assoc. 
Comput. Mach. 8, 628--636 (t96t). 

[7] RILEY, J. D. : Solving Systems of Linear Equations with a Positive Definite, 
Symmetric, but  Possibly Ill-Conditioned Matrix. Math. Tables Aids Comput. 
9, 96--10t (1956). 

[8] WAUGH, F. V., and P. S. DWYER: Compact Computation of the Inverse of a 
Matrix. Ann. Math. Star. 16, 259--271 (1945). 

[9] WILKINSON, J. H. : HOIISEHOLDERS Method for the Solution of the Algebraic 
Eigenproblem. Comput. J. 3, 2 3 - 2 7  (t960). 

[10] - Error Analysis of Direct Methods of Matrix Inversion. J. Assoc. Comput. 
Mach. 8, 281--330 (1961). 

Stanford University 
Computation Center 

Stanford, California 94 305 (USA) 

(Received September 24, 1964) 


